Green kernel estimates and the full Martin boundary for random walks on lamplighter groups and Diestel–Leader graphs
نویسندگان
چکیده
We determine the precise asymptotic behaviour (in space) of the Green kernel of simple random walk with drift on the Diestel–Leader graph DL(q, r), where q, r 2. The latter is the horocyclic product of two homogeneous trees with respective degrees q + 1 and r + 1. When q = r , it is the Cayley graph of the wreath product (lamplighter group) Zq Z with respect to a natural set of generators. We describe the full Martin compactification of these random walks on DL-graphs and, in particular, lamplighter groups. This completes previous results of Woess, who has determined all minimal positive harmonic functions. 2005 Elsevier SAS. All rights reserved. Résumé On détermine le comportement asymptotique précis (dans l’espace) du noyau de Green de la marche aléatoire simple avec dérive sur le graphe de Diestel–Leader DL(q, r), où q, r 2. Ce graphe est le produit horocyclique de deux arbres homogènes de degrés q + 1 et r + 1, respectivement. Quand q = r , il s’agit du graphe de Cayley du produit en couronne (« lamplighter group ») Zq Z par rapport à un ensemble naturel de générateurs. On décrit la compactification de Martin complète de ces marches aléatoires sur les graphes DL, et en particulier, les groupes du « lamplighter ». Ceci complète les résultats précédents de Woess, qui a déterminé les fonctions harmoniques minimales. 2005 Elsevier SAS. All rights reserved. MSC: 60J50; 05C25; 20E22; 31C05; 60G50
منابع مشابه
Lamplighters, Diestel-Leader Graphs, Random Walks, and Harmonic Functions
The lamplighter group over Z is the wreath product Zq ≀ Z. With respect to a natural generating set, its Cayley graph is the Diestel-Leader graph DL(q, q). We study harmonic functions for the “simple” Laplacian on this graph, and more generally, for a class of random walks on DL(q, r), where q, r ≥ 2. The DL-graphs are horocyclic products of two trees, and we give a full description of all posi...
متن کاملPositive Harmonic Functions for Semi-isotropic Random Walks on Trees, Lamplighter Groups, and Dl-graphs
We determine all positive harmonic functions for a large class of “semiisotropic” random walks on the lamplighter group, i.e., the wreath product Zq ≀Z, where q ≥ 2. This is possible via the geometric realization of a Cayley graph of that group as the Diestel-Leader graph DL(q, q). More generally, DL(q, r) (q, r ≥ 2) is the horocyclic product of two homogeneous trees with respective degrees q+1...
متن کاملA note on the Poisson boundary of lamplighter random walks
The main goal of this paper is to determine the Poisson boundary of lamplighter random walks over a general class of discrete groups Γ endowed with a “rich” boundary. The starting point is the Strip Criterion of identification of the Poisson boundary for random walks on discrete groups due to Kaimanovich [16]. A geometrical method for constructing the strip as a subset of the lamplighter group ...
متن کاملRandom Walks on Diestel-leader Graphs
We investigate various features of a quite new family of graphs, introduced as a possible example of vertex-transitive graph not roughly isometric with a Cayley graph of some finitely generated group. We exhibit a natural compactification and study a large class of random walks, proving theorems concerning almost sure convergence to the boundary, a strong law of large numbers and a central limi...
متن کاملSpectral Computations on Lamplighter Groups and Diestel-leader Graphs
The Diestel-Leader graph DL(q, r) is the horocyclic product of the homogeneous trees with respective degrees q+1 and r+1. When q = r, it is the Cayley graph of the lamplighter group (wreath product) Zq≀Z with respect to a natural generating set. For the “Simple random walk” (SRW) operator on the latter group, Grigorchuk and Żuk and Dicks and Schick have determined the spectrum and the (on-diago...
متن کامل